Spatio-temporal models of mental processes from fMRI
نویسندگان
چکیده
Understanding the highly complex, spatially distributed and temporally organized phenomena entailed by mental processes using functional MRI is an important research problem in cognitive and clinical neuroscience. Conventional analysis methods focus on the spatial dimension of the data discarding the information about brain function contained in the temporal dimension. This paper presents a fully spatio-temporal multivariate analysis method using a state-space model (SSM) for brain function that yields not only spatial maps of activity but also its temporal structure along with spatially varying estimates of the hemodynamic response. Efficient algorithms for estimating the parameters along with quantitative validations are given. A novel low-dimensional feature-space for representing the data, based on a formal definition of functional similarity, is derived. Quantitative validation of the model and the estimation algorithms is provided with a simulation study. Using a real fMRI study for mental arithmetic, the ability of this neurophysiologically inspired model to represent the spatio-temporal information corresponding to mental processes is demonstrated. Moreover, by comparing the models across multiple subjects, natural patterns in mental processes organized according to different mental abilities are revealed.
منابع مشابه
State-Space Models of Mental Processes from fMRI
In addition to functional localization and integration, the problem of determining whether the data encode some information about the mental state of the subject, and if so, how this information is represented has become an important research agenda in functional neuroimaging. Multivariate classifiers, commonly used for brain state decoding, are restricted to simple experimental paradigms with ...
متن کاملSpatial–temporal modelling of fMRI data through spatially regularized mixture of hidden process models
Previous work investigated a range of spatio-temporal constraints for fMRI data analysis to provide robust detection of neural activation. We present a mixture-based method for the spatio-temporal modelling of fMRI data. This approach assumes that fMRI time series are generated by a probabilistic superposition of a small set of spatio-temporal prototypes (mixture components). Each prototype com...
متن کاملAssessment of Neonate's Congenital Hypothyroidism Pattern Using Poisson Spatio-temporal Model in Disease Mapping under the Bayesian Paradigm during 2011-18 in Guilan, Iran
Background: Congenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisso...
متن کاملDynamic 3D Clustering of Spatio-Temporal Brain Data in the NeuCube Spiking Neural Network Architecture on a Case Study of fMRI Data
The paper presents a novel clustering method for dynamic Spatio-Temporal Brain Data (STBD) on the case study of functional Magnetic Resonance Image (fMRI). The method is based on NeuCube spiking neural network (SNN) architecture, where the spatio-temporal relationships between STBD streams are learned and simultaneously the clusters are created. The clusters are represented as groups of spiking...
متن کاملTracking cognitive processing stages with MEG: A spatio-temporal model of associative recognition in the brain
In this study, we investigated the cognitive processing stages underlying associative recognition using MEG. Over the last four decades, a model of associative recognition has been developed in the ACT-R cognitive architecture. This model was first exclusively based on behavior, but was later evaluated and improved based on fMRI and EEG data. Unfortunately, the limited spatial resolution of EEG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 57 2 شماره
صفحات -
تاریخ انتشار 2011